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We study the effects of two kinds of interactions in tubelike polymers and demonstrate that they result in the
formation of secondary motifs. The first has an entropic origin and is a measure of the effective space available
to the solvent. The second arises from solvophobic interactions of the solvent with the polymers and leads to
an energy proportional to the contact surface between the tube and solvent particles. The solvent molecules are
modeled as hard spheres and the two interactions are considered separately with the solvent density affecting
their relative strength. In addition to analytical calculations, we present the results of numerical simulations in
order to understand the role played by the finite length of short polymers and the discrete versus continuum
descriptions of the system in determining the preferred conformation.
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The study of entropic effects has a venerable history in
physics. Onsager �1� studied the nature of an entropically
driven isotropic-nematic transition of a fluid composed of
infinitely thin hard rods. The addition of a small amount of
polymers to a colloidal suspension induces an effective at-
traction between the colloidal particles which can lead to
flocculation through the Asakura-Oosawa �AO� mechanism
�2�. Our focus in this paper is on studying the optimal con-
formations of a tube subject to compaction through its inter-
actions with the solvent. Our principal results are that the
tube adopts helical and planar conformations with the latter
resulting from the discreteness of the tube.

Our results are useful for understanding proteins �3,4�. In
spite of their complexity, proteins fold into a limited number
�5� of evolutionarily conserved structures �6� made up of
helices and almost planar sheets. It has been proposed that
the geometries of protein folds originate from the common
attributes of all proteins that can be encoded in a simple
geometrical model of a flexible tube of nonzero thickness
�7–9�. Proteins occupy the marginally compact phase of a
tubelike polymer �9–13� which is rich in secondary motifs
and has a relatively low structural degeneracy compared to
the generic compact polymer phase. While it is well recog-
nized that the formation of secondary structure arises from
backbone-backbone hydrogen bonds �14,15�, the solvent is
known to play a fundamental role in promoting the folding
process �3�. The importance of the solvation free energy and
of entropy-induced interactions has been increasingly recog-
nized in the last few years �16–19�.

In a system of hard spheres, the excluded volume con-
straint can be enforced by forbidding configurations in which
the distance between pairs of sphere centers is smaller than
the sphere diameter. In the continuum limit, a self interacting
tubelike polymer cannot have two-body interactions �20�.
The self-avoidance of a flexible tube of thickness � �the tube
radius� can be enforced through a three-body potential
�7,20,21� which forbids conformations in which the radius of
a circle through an arbitrary triplet of points on the axis is
smaller than the tube thickness. A solvophobic polymer in a

solvent, such as a protein in vivo, adopts a self-avoiding con-
formation in which the contact surface is minimized, an ef-
fect that may be captured by considering �9� an effective
solvent induced �free-� energy proportional to the contact
surface between the tube and the solvent particles. Further-
more, due to the discrete nature of the solvent one expects
entropy-induced effective interactions of the AO type
�2,16,18� as investigated by Snir and Kamien �17� and more
recently by Hansen-Goos et al. �19� for a tubelike polymer in
helical conformations. The AO type of interaction yields an
effective �free-� energy proportional to the volume excluded
to the solvent.

It was noted recently by Hansen-Goos et al. �19,22� that
Hadwiger’s theorem of integral geometry �23�, under rather
general conditions, allows one to write the solvation free
energy Fsol of the tube in a solvent as

Fsol = PVexc + ��acc + kC + k̄X , �1�

where Vexc, �acc, C, and X are the volume excluded to the
solvent, the area accessible to the solvent and integrated
mean and Gaussian curvatures of the accessible surface, re-
spectively. P and � are the solvent pressure and the planar

surface tension, respectively, whereas k and k̄ represents the
two bending rigidities; the properties of the solvent enters
through these coefficients and can hence be computed sepa-

rately. The AO approximation amounts to setting �=k= k̄
=0 and assuming an ideal gas solvent P= Pid corresponding
to an infinitely diluted system. The principal aim of our letter
is to provide exact expressions for the excluded volume and
the contact surface of a tubelike polymer in a solvent of hard
spheres and to investigate the effects of these terms both
analytically and by Monte Carlo simulations in determining
the optimal conformations of short polymers.

In a continuum description, the axis of a tube is described
by the curve R�s� parametrized by its arc length s. The
Frenet reference frame at location s is given in terms of the

unit vectors �T̂�s� , N̂�s� , B̂�s��, the tangent, the normal, and
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the binormal, respectively �24�. The curvature at location s,
��s� �the inverse radius of curvature�, is defined in terms of

one of the Frenet-Serret equations dT̂�s� /ds=��s�N̂�s� and

B̂�s�= T̂�s�� N̂�s�.
The position vector of a point inside the tube of length L

is

r�s,�,�� = R�s� + ��cos �N̂�s� + sin �B̂�s�� , �2�

where 0	�	2
, 0	�	�, and 0	s	L. The volume ele-
ment in the above curvilinear coordinate system is given by
dV=����s ,� ,���dsd�d�, where ��s ,� ,���1−��s�� cos �.
Let � be the radius of the solvent particles assumed to be
spherical. For a straight tube the excluded volume is simply
Vexc,S=
L��

2, where ����+�, since the volume inacces-
sible to the centers of the solvent particles is a tube with
thickness ��. In order to calculate the excluded volume when
the tube curls and different regions of the tube come close to
each other, we have to consider points which are shared by
more than one circular section of radius �� associated with
distinct points of the tube axis. We avoid multiple counting
by introducing the integer function n�s ,� ,�� which gives the
number of circular cross sections of radius ��, centered at
distinct points of the tube axis, containing the point r�s ,� ,��
where �	��. A point, r�s ,� ,��, belongs to the circular sec-
tion associated with R�s�� if the vector distance ds,�,��s��
=r�s ,� ,��−R�s�� is perpendicular to the tangent at s�, T̂�s��,
and its modulus is less than ��. Note that n�s ,� ,��
1 be-
cause s�=s trivially satisfies the above conditions. The ex-
cluded volume is thus given by

Vexc = 	
D

dV
1

n�s,�,��
, �3�

where D is the domain 0	�	2
, 0	�	��, and 0	s
	L. The same integer function can be used to obtain an
expression for the contact surface on setting the � coordinate
equal to the radius � of the tube

�cont = 	
D

dV��� − ����1 − n�s,��,��� . �4�

Here ��x� is the step function equal to 1 if x
0 and 0
otherwise. It is not difficult to show that Eq. �4� is equivalent
to the formula presented in Ref. �9�, for both an infinite
length tube and a finite one. In the latter case hemispheres
needs to be attached to both ends while computing n�s ,� ,��,
as is the case in our numerical simulations. In a swollen
configuration corresponding to the absence of overlap,
n�s ,� ,��=1 for all �s ,� ,�� and ��s����

−1 for all s, and Eqs.
�3� and �4� reproduce the correct results Vexc,S=
L��

2 and
�cont,S=2
�L. It is illuminating to rewrite the difference
Vexc,S−Vexc as

�V � Vexc,S − Vexc = Vov − 2V��0 �5�

where we have introduced the overlap volume

Vov = 	
D

dV
n�s,�,�� − 1

n�s,�,��
�6�

which is the part of the excluded volume with nonvanishing
overlap, i.e., with n�s ,� ,���1, and the volume related to the
highly curved regions given by ��s����

−1,

V��0 = 	
D

dV��− ��s,�,��� . �7�

As a result, the difference �V between the excluded volumes
in a swollen and a compact conformation is not simply equal
to the overlap volume Vov as in the usual Asakura-Oosawa
mechanism involving rigid spheres �2�. There is no change in
shape of the colloidal particle whereas the tube polymer un-
dergoes a shape change upon folding. This difference has
some interesting consequences. Suppose, for instance, that
the tube is twisted and connected at the two ends to form a
torus/donut of thickness � and radius R. If R��� one clearly
has �V=0. If R	��, a straightforward calculation shows
that Vov=V��0 so that �V=−��R /���4
��

3 /3 becomes
negative with the function

��x� = 
1 +
1

2
x2��1 − x2 −

3

2
x arccos x �8�

positive in the interval 0	x	1. The swollen configuration
is entropically more favorable compared to a tight donut.
This counterintuitive result stems from the fact that the cur-
vature yields both inflated and deflated volume elements. In
the absence of overlap, the two effects balance against each
other yielding �V=0. When ��0, the same balance can be
achieved only by allowing deflated “negative” volumes. An
imbalanced inflated volume is then present, which may over-
turn the excluded volume reduction due to the presence of
overlap, as in the donut case.

Consider an infinite helix of radius R and pitch P. The
translational invariance along the tube axis simplifies the cal-
culations, and we can consider both the excluded volume and
the contact surface per unit length. Figure 1 shows the values
of c= P /R for the helices which minimizes Vexc /L, as the
solvent molecule radius changes—the analogous results for
�cont /L exhibits similar behavior. When � is below a thresh-
old value, the optimal configuration corresponds to the ideal
helix �7,11,17,19,25� which simultaneously minimizes the
local and nonlocal radius of curvature �21�. For an ideal he-
lix, c=c�=2.5126¯ which is within 3% of the value for �
helices in proteins �7�. Interestingly, a similar optimality con-
dition is also found for double strand DNA �26�. These ob-
servations suggest that � helices might originate in general
optimization processes transcending the large differences in
the amino acid sequences of different proteins. As the solvent
sphere size � increases beyond the threshold, Fig. 1 shows
that the optimal value of c decreases from its value in the
ideal helical structure. Our results confirm those obtained in
previous work �17,19�. For the excluded volume interaction,
the helix maintains its ideal pitch-to-radius ratio c� up to a
critical value ��
0.0835�. Above this threshold, the ideal
helix is no longer the optimal conformation—even though
the excluded volume along the central axis increases, there is
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a better overlap between subsequent turns thus decreasing
the excluded volume. The inset of Fig. 1 shows the results
maximizing the overlap rather than minimizing the excluded
volume. The optimal value c� is maintained up to ��
0.1�,
a value larger than that obtained in the minimum excluded
volume case. This mirrors the situation with the donut: for
large curvature, there is a nonzero, albeit small, difference
between �V and Vov as dictated by Eq. �5�. An exact analyti-
cal computation for the contact surface �27� yields an iden-
tical pattern with a smaller critical value ��=0.04627� for
the solvent radius. Again, this is in perfect agreement with
the value given in Ref. �19� using a different method. Our
method allows one to treat the case of finite helices effi-
ciently using numerical integration. Figure 1 shows the opti-
mal value of c for helices of varying length L. Short helices
show a tendency to remain ideal for higher values of the
solvent radius.

When the tube is very long or there are many independent
tubes, one might expect that the helical conformation is de-
stabilized. For many long tubes, an optimal configuration
which minimizes both the contact surface and the excluded
volume is likely a regular arrangement of parallel tubes
forming a hexagonal arrangement somewhat reminiscent of
the Abrikosov phase in type-II superconductors �28�. We
have verified that N
4 infinitely long tubes have a lower
excluded volume per unit length with respect to the optimal
helix �for a single tube one should also take into account the
N−1 turns�.

In order to investigate the possibility for other kinds of
optimal conformations for a short tube as well as the role of
discrete versus continuum descriptions of the tube, we resort
to Monte Carlo simulations using the formulae given above
for both the excluded volume and the contact surface. We
seek to identify the conformations which minimize Vexc or
�cont as the solvent radius � and the polymer length L are
varied �the thickness � is kept fixed because the results de-
pend only on the dimensionless ratios � /� and L /��. Our
Monte Carlo simulations combine crankshaft and pivot
moves of a homopolymer with a Metropolis annealing
schedule �29� following initializing the chain in an arbitrary
extended conformation. We have considered two different
polymer lengths, L=10� and L=20�, fixing the bond length
b=� /2. The results are summarized in Fig. 2—the optimal
structures obtained on varying � are shown—while the val-
ues of �V=Vexc,S−Vexc and ��=�cont,S−�cont reached are
reported in Table I. Figure 2�a� displays the conformations
obtained with L=10�. For both the excluded volume and
contact surface, two different “phases” emerge: at small �, a
planar phase, in which the ground state has a typical planar
hairpin structure, is found; at large �, a “helicoidal” phase is
found in which helices and saddles dominate, with compa-

0.05 0.1 0.15 0.2 ε/∆
2

2.2

2.4

2.6

c V
Ov

V
exc

0.2 0.4 ε/∆
1.5

2

2.5

3

c

L/∆ = 8

L/∆ = 16
L/∆ = 12
L/∆ = 10

c
*

= 2.5126

ε∗/∆ = 0.0835

FIG. 1. �Color online� Plot of the pitch-to-radius value c= P /R
for the optimal helix on minimizing the excluded volume as a func-
tion of the ratio � /�, for different helix lengths L. Below a given
threshold value �shown for the L=� case� of the solvent radius, the
ideal helix conformation is obtained. Our results were obtained by
first setting the value of the pitch P so that two different turns of the
helix have minimum distance for a fixed R �17�. Second, we iden-
tify the value of c which minimizes Vexc /L for a given � and these
values are plotted against each other. An analogous calculation for
�cont /L shows a similar trend toward optimal finite helices having a
greater c with respect to the infinite helix. In the inset, the different
behaviors obtained on considering the minimization of the excluded
volume and the maximization of the overlap volume is shown for
the L=� case.

FIG. 2. �Color online� Conformations adopted by tubes of
length �a� L=10� and �b� L=20� subject to either the excluded
volume or contact surface prescriptions for promoting compaction.
The values of � /� are 0.005, 0.025, 0.05, 0.10, 0.20, and 0.50. The
resulting conformations for the shorter tube are either saddles or
helices for � /��0.20, while for smaller �, after a crossover phase,
the hairpin becomes the ground state—the planarity of the structure
is highlighted on the left of �a�. For the longer tube, the planar
phase consist of �-sheet-like structures and the helicoidal phase is
characterized by double helices, saddles and irregular helices. The
planar phase disappears for the contact surface case. All these con-
formations are akin to those found in Ref. �11�.
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rable Vexc and �cont. The two different regimes are separated
by a crossover region characterized by the coexistence of all
these structures. Note that the excluded volume effect exhib-
its a stronger propensity for the planar phase. This is evident
for L=20� shown in Fig. 2�b�—the contact surface planar
phase disappears already at � /�=0.005, the lowest value
tested. The helicoidal phase in this case consist of double
helices, saddles and irregular helices, with turns of different
lengths. Our simulations suggest the existence of an energy
barrier between the two classes of conformations �hairpin
versus helix or saddle� in the crossover region. The appear-
ance of planar structures is a consequence of the discrete
nature of the polymer �nonzero bond length� which plays a
crucial role especially at small �.

In summary, tubelike polymers with naturally arising sol-
vent induced interactions exhibit low free energy conforma-

tions with secondary motifs. This suggests that the secondary
motifs commonly found in bio-polymers such as proteins
and DNA have a common and fundamental origin which
transcends chemical detail. When the discrete nature of the
polymer dominates, planar conformations akin to the � sheet
in proteins emerge along with helical conformations as the
optimal ones. In contrast, when the solvent molecule size is
sufficiently large so that the discrete nature of the polymer
can be neglected, the continuum approximation is valid and
helical conformations dominate with single and double helix
conformations.
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